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Let I/J be a finite positive measure on R, and let F~ (z) = 5:'- 7 (dl/J( t )/( z - t») be its
Stieltjes transform. A special multipoint Pade approximation problem for F~(z) is
studied, where the interpolation points are a finite number of points a J , ••• , ap in R
repeated cyclically and the support of I/J is contained in an interval bounded
by adjacent interpolation points. For the case p = 3 monotone convergence of
each of the subsequences {P 3q , .. (z)/Q3q +.. (z)}, m = 0, 1,2, of the multipoint Pade
approximanls {Pn(z)/Qn(z)} is established, and sufficient conditions (involving
general moments c)'1 = J"' x (dl/J(t)/(t - ay» for divergence of the series
L.:~ 1 IQ3q+m(z)1 2 are given." 1993 Academic Press, Inc.

1. INTRODUCTION

By a distribution we mean a finite positive measure ljJ on R with
infinite support. By its Stieltjes transform we mean the function F.p (z) =r:x (dljJ(t)/(z-t».

Let a"a2, ...,ap be distinct points in R, a l <a2<'" <ap' We call the
sets [a l ,a2], [a2,a3]"'"[ap_l,ap], (-oc,al]u[ap,oo) Stieltjes inter­
vals for the point set {a I' ... , ap}. We call the distribution function ljJ a
Stieltjes distribution for the point set {a I' .•. , Q p} if the support S( ljJ) is
contained in a Stieltjes interval I, and all the moments

Co = f dljJ(t),,
i= 1, .."p,

C U ) = f dljJ(t).
I ,(t-ay

j= 1, 2, .."

(1.1 )

exist. Note that S( ljJ) may contain one or two (or none) of the points in
{a" ..., Q p }.

We later prove (in the case p = 3) that when ljJ has its support in
one Stieltjes interval I, then certain subsequences of multipoint Pade
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approximants converge monotonically on the remaining (open) Stieltjes
intervals.

When Co, cy), and a Stieltjes interval 1 are given, the extended Stieltjes
moment problem (ESM P) consists of finding distributions l/J with S( l/J) c 1
such that Eqs. (1.1) are satisfied. Conditions for existence and uniqueness
of solutions of the ESMP were discussed in [17]. Properties equivalent to
unique solvability were also derived. However, it was not observed that
these conditions are always satisfied when p? 3, since F", is holomorphic at
the points G r outside the Stieltjes interval 1.

For each natural number n we let f = f" be defined by I ~ f ~p, n = f

(mod p), and we let q = q" be defined as the integer part [nip] of nip. Thus
n = qp + f. We also write G" for Gr.'

In the following, l/J is a given distribution. The Stieltjes transform F", has
the formal power series expansions

'X'

F (7)- ~ _CUI (7-G.)'
'" ~ - L i+' ~ r

.i~o

at G i , i= I, ...,p

(1.2)

at 00.

By the (n - I, n) p-point Pade approximant for F", we mean the (unique)
rational function U,,(z)/V,,(z) with deg U,,~n-I, deg V,,=n, which inter­
polates F", in the sense

(1.3 )

U,,(z)/V,,(z)- L -cYl,(z-G;).i=O([Z-G;]s+I),
i~ 0

where s = 2q + I for i < r, S = 2q for i = f, and S = 2q - I for i> f.

(Here and in the following, obvious modifications of notation are
necessary when indices f + k, f - k appear where f + k > p, f - k < O.
The p-point Pade approximants are special cases of multipoint Pade
approximants (MPA). For existence of the MPA, see Section 2.)

For general information on multipoint Pade approximants, see, e.g.,
[1-3,8, 10--12, 18,20].

Let S( t/J) c I, 1 a Stieltjes interval. In this paper we discuss a general
method for obtaining monotonic convergence of subsequences on intervals
fl, where J are Stieltjes intervals disjoint from I. The methods of proof do
not work when the suppert of t/J is only contained in some union (not a
single) of Stieltjes intervals. We give specific results for the case p = 3, and
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use these to obtain conditions for divergence of subseries of the series
L;:'~ 1 IQn (zW, where Qn (z) are the normalized orthogonal rational
functions associated with the approximation problem (see Section 2).

Our approach is based on arguments employed by Karlsson and
von Sydow [9] in the ordinary Pade approximation situation (i.e.,
interpolation at (0). See also [4] where the ordinary two-point situation
(i.e., interpolation at 00 and 0) is discussed.

2. ORTHOGONAL RATIONAL FUNCTIONS AND MPA

Let [jf = [jf( {G L' ••• , Gp } ) denote the linear space of all rational functions
with no poles in the extended complex plane C outside {G 1, .. , Gp }. Thus .~

consists of all functions of the form

(2.1 )

The Stieltjes distribution l/J defines an inner product (, >on .~ by

(R, S> =LR(t)S(t) dl/J(t).

By applying the Gram-Schmidt procedure to the sequence

(2.2)

we obtain a monic orthogonal sequence {Sn} in .'1l. The functions Sn may
be written as

where

Sn(Z) = VIl(z)/NIl(z), (2.3 )

and Vn is a polynomial of degree n. (For the meaning of q and r, see
Section 1.) We may also write

pin) pIn) P(Il) 1
Sn(z) = Inn) +-::=-+ ... +=--+ ... + (~_ n-l)q+l + (~_ )q+L'

"GI "Gp "Gr _ I "Gr

(2.5 )
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The associated functions R
II

are defined by

The functions R
II

belong to .'Jf and may be written in the form

R,,(z)= U,,(z)/NII(z),

(2.6)

(2.7)

where U" is a polynomial of degree at most n - 1. We denote by P II and
Q" the normalized functions, i.e.,

P,,(z) = II SIIII I R,,(z), QII(Z)= IIS"II- ' SIl(Z). (2.8 )

The rational functions U,,(z)/VIl(z) = R,,(z)/S,,(z) are MPAs for F", in the
sense that Eqs. ( 1.3) are satisfied. (See [15].)

The error term E"(z,t/!)=R,,(z)/S,,(z)-F,,,(z) may be written in the
form.

1 f S,,(t)
EIl(z, ljJ) = SIl(Z) J t _ Z dljJ(t)

E,,(z,ljJ)=.. 1 . 2f (t-a,)S,,(tf dljJ(t).
(z-a,)S,,(z) J t-z

(2.9)

(2.10)

(See [17].)
The zeros of SIl are simple and lie in I. (See [16]. A slight modification

of the argument given there shows that this result holds also when
1= ( - Cf), a I] U [a p' Cf)).) It follows in particular that the coefficient fJ::') I

in (2.5) is different from zero.
We make use of the fact that the functions R,,(z)/SIl(z) are the

approximants of a continued fraction K,~=,(a,,(z)/hll(z)), where the
elements have the form

( ~)= CIl(z-all_ 2)
an ....

z-aJl
for n ~ 3,

(2.11 )

h
2
(z)= A 2 (z-a Il +B2 ,

z-a2

h"(z)=A,,(z-a,,-Il+B,,(z-a,, 2)
z -an

for n ~ 3.

(2.12 )
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for n ~ 3,

for n ~ 3,

(2.15 )

(2.14 )

(2.13 )

for n ~ 3.

Here the coefficients A", B", e" are given by

f3~2)

A 2 = f3~I)'

We recall that

[
R,,(z)] = b,,(z) [R,,_ dZ

)] + a,,(z) [R"_2(Z)]
5,,(z) 5,,_I(Z) 5"_2(Z)

for n~ 1, R_ 1 = 1, Ro=O, S_I =0, So= 1. (2.16)

For these properties of R", S", see [6]. For basic information on con­
tinued fractions, see, e.g., [7].

The zeros t l' ..., t" of 5" are nodes for a quadrature formula with positive
weights AI' ... , A" which is exact for all functions R of the form (2.1) with
ni~ 2q + 2 for i < r, n, ~ 2q + I, ni~ 2q for i> r. Thus for such functions we
have

(2.17 )

(See [13, 14].) This result applied to the function f(t) = (5,,(t) - 5" (z))/
(t - z) yields the formula

(2.18 )

Since L:Z ~ I Ak = Co, it follows that the sequence {Rn(z )/5" (z)) is uniformly
bounded on every compact subset of C - [.

We define the step function!/t" by !/tn(t)=L:Pk:t~td. Then°~!/t" (t) ~ Co for all nand t. By Helly's theorems it follows that every
subsequence of {!/tn} contains a subsequence {!/t"I')} which converges to
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a solution q> of the ESMP associated with the moments (1, 1), and
Rn1v,(z)jSn(v)(Z) = Jt(dl/Jnlv,(t)/(z-t)) converges to Fo/J(z) for zEC-1.
It easily follows that if the ESMP has I/J as its unique solution, then
{Rn(z)/Sn(z)} converges to Fo/J(z), locally uniformly on C-l.

Let airt!. Then for all solutions tit, Fo/J have the same power series expan­
sions at ai' hence all Fo/J are equal. It follows that for p? 3 the ESMP has
a unique solution, and hence {Rn(z)/Sn(z)} converges to Fo/J'

[n Section 4 we establish monotonic convergence of certain subsequences
of {R n (z)/S n (z) }. [n the proof it will not be made use of the fact (obtained
by normal families arguments) that the whole sequence {Rn(z}/Sn(z}} is
convergent.

For more detailed information about the functions Rn, Sn' R,,/SlI we
refer to [13~17]. The necessary results on convergence of analytic functions
can be found, e.g., in [19].

3. CONDITIONS ON SUBSEQUENCES OF MPA

Let p, q E N, p> q. We write

D[p, q] = D[p, q, z] = Rp(z)/Sp(z) - Rq(z)jSq(z). (3.1)

[n the following, {n( v)} denotes a subsequence of N. Recall that
Qn(z} = II Sn 11- 1 Sn(z).

THEOREM 3.1. Let Z E R. Assume that the following conditions are
satisfied:

'etC'

L ID[n(v + 1), n(v), z] 1< oc (3.2)
\'= I

'x

L: ID[n(v + 1), n(v), z] Qn(H 1)(z) Qn(v)(z)II/2 = 00. (3.3)
V= 1

Then L.~~ I IQlI(v)(ZW = 00.

Proof By the Schwartz inequality we obtain

X<

L ID[n(v + I), n(v), z] Qn(H I )(z) Qn(v\(Z) 1
1
/
2

\'= I

~ t~1 ID[n[v + 1), n(v), z] I} 1/2

{
X} 1/2

. \'~IIQnIHII(Z)Qn(VI(Z)1 '. (3.4 )
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From (3.2)-(3.3) we then obtain L:C~ I IQn(v+ I)(Z) Q,,/,.)(z)! = CfJ, hence
also

C£

I I Qn(v)(Z) 1
2 = 00. I (3.5 )

Remark. We note that in order to establish (3.2) it suffices to show that
the sequence {Rn1v)(z)jSn(,.)(z)} is bounded and monotonic.

4. BOUNDED MONOTONIC SUBSEQUENCES OF MPA FOR P = 3

In this section we study the subsequences {R 3q +dS3q+ I},
{R3q+2/S3q+2}' and {R 3q +3/S3+3} in the case that p=3. Thus we have
three points a., a2, a3 where a l < a2 < a3, and S(l/J) c I where I is one of
the sets [ai' a2], [a2, a3], (- 00, a l ] u [a3, 00).

By repeated use of the recurrence relations (2.16) we obtain the formulas

D[n, n - 1, z] Sn(z) Sn __ I (z) = (-1 r- I a l (z)··· a,,(z) (4.1)

D[n,n-2,z]Sn(z)=Sn_dz)bn(z)D[n-l,n-2,z] (4.2)

D[n, n - 3, z] Sn(z) = Sn- 2(z)[bn(z) bn dz)+ an(z)]

xD[n-2,n-3,z]. (4.3)

Substitution from the formulas (2.11 }-(2.15) yields (for n ~ 5)

D[n, n- 3, z] Sn(z) Sn_3(Z)

=[{An(z-an_tl+Bn(z-an 2)}{A n-dz-a,,_2)+Bn I(z-an 3)}

C (
7_ )(7_ )]D[n-2,n-3,z]Sn_2(z)Sn_3(Z)

+ n ~ an_I" an-- 2 (7_ )( _ ).. a" z a,,_ 1

(4.4 )

and (when p = 3)

where

and

Tn(z) = I'n.l + I'n,2 + 1'".3 + I'n.4 + 1'".5

(4.5 )

(4.6 )



156 OLAV NJASTAD

_{lIn) {l1"--I){l("-2)(a -a I)'I' _ fI- I n - 2 n - 3 n 11

1".4- ( )( )z-afl J z-afl

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

In the following, I is one of the intervals 11= [aI' a2], 12= [a2, a3]'
13 = ( - 00, a 1] U [a 3' 00).

PROPOSITION 4.1. Let S( l/t) c I. The following implications hold:

(a) (11=/I,thenD[3q+3,3q,z]<OforzE/"D[3q+2,3q-l,z]
<Ofor z E 12 , D[3q + 1, 3q -2, z] >0 for Z E 12 .

(b) IfI=I2 , thenD[3q+3,3q,z]<OforzE/"D[3q+2,3q-l,z]
>Ofor zEI3 , D[3q+ I, 3q-2, z] <Ofor ZE/ I .

(c) If 1= 13 , then D[3q + 3, 3q, z] > 0 for Z E II, D[3q + 2, 3q - I, z]
<Ofor ZE/2 , D[3q+ I, 3q-2, z] <Ofor ZE/ I •

Proof. We prove (a); the proofs of (b) and (c) are similar.
For n = 3q + 3 we may write

(4.8a)

(4.8b)

(4.8c)

We consider the case that q is even, the argument for odd q is similar. Note
that n is odd when q is even.

Since 1/(z-a3)q+1 is the dominating term in S,,(z) near a3,
P:,"!\/(Z-a2)Q+1 is the dominating term near a2' and p~,n)2/(z-atlQ+1 is
the dominating term near aI' and since all the zeros of S" lie in (aI' a2)'
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we find that S,,(z»O for z>a3,SIl(z)<0 for zE(a2,a 3), S,,(z»O for
Z < a3' From this it follows that f3~"2 1 < °and f3~"2 2 < O.

By similar arguments we see that S,,_3(Z»O for zEI3 and that
f3~"--21) < 0, f3~"--31) > 0, f3~"--/) < 0, f3~"~42) < O.

It follows that all the terms }'".k' k = I, 2, 3, 4, 5, are negative for z E 13 ,

hence D[3q + 3, 3q, z] < 0 for Z E 13 ,

The arguments for n = 3q + 2 and n = 3q + I are similar. I

PROPOSITION 4.2. Let S( 1jJ) c I. The following implications hold:

(a) If 1=11 , then E 3q +3(Z, 1jJ»O for ZEI3, E 3q +2(Z, 1jJ»O for
ZE 12, E 3q + I (z, 1jJ) < 0 for ZE 12,

(b) If 1=12, then E 3q +3(Z,t/!»0 for ZEI3, E 3q +2(Z,t/!)<0 for
ZEI3, E3q+dz, 1jJ»Ofor ZEIt·

(c) If 1=13, then E3q +3(Z, 1jJ)<0 for ZEIl, E3q +2(Z, 1jJ»0 for
ZEI2, E3q+dz, 1jJ»Ofor ZE/2·

Proof This follows easily from (2.10). I

THEOREM 4.3. Let 1=lk be one of the intervals 11,12,13, and let
S(IjJ)cI. Then each of the subsequences {R3q+3/S3q+3}' {R3q+2/S3q+2},
{R 3q + dS3q+ d converges monotonically to a limit in each of the two
remaining open intervals Ii' j =I=- k.

Proof This follows immediately from Proposition 4.1. and Proposi­
tion 4.2. I

Remark. We recall that Theorem 4.3 implies that each of the sub­
sequences in that theorem satisfies the condition (3.2) of Theorem 3.1
(with v replaced by q).

5. CARLEMAN TYPE CONDITIONS FOR SUBSERIES OF L::~ 1 IQ,,(zW

As in Section 4 we consider the situation that p = 3, a J < a2 < a3, and
S(IjJ) c I where I is one of the Stieltjes intervals II = [at, a2], 12 = [a2, a3],
13 = (- CIJ, at] V [a 3, CIJ).

PROPOSITION 5.1. The following inequalities hold for ZIf {a t , a2' a 3 } : (a)

lim infq Ir 3q + dz)1 > 0, (b) lim infq 1r 3q + 2 (z)1 > 0, (c) lim infq Ir,q (z)1 > O.

Proof Let t\"), ..., t~") be the zeros of S,,(z), We see from (2.3)-(2.5) that
we may write

(5.1 )
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Comparison of (2.5) and (5.1) gives

{lllli = nm#,(a, - amym
o n:;'=I(a,-t~))'

where Sm = q + 1 for m ~ r, Sm = q for m > r.
We also obtain

hence also

(5.2 )

(5.3 )

Similarly we get

(recall that a,_ 3=a,).
From these formulas follow

n;;'~I(a, 2-t~~I)rr:I-~\(a,-t~-I')rr711-~\ (a, I-t~-I))

rr~I~I(a,-t:::))rr;~='.(a, l-t~:-I))rr;;'-:::'.(a'_2-t~~ I))

(5.6 )

The zeros of SII _ I separate those of SII (see [16]), hence

j{l
llli {lill 1)1 la _t(n)n--2 11-3 >- ,-2 0

{l ill-I) ,,- la - ,(11)1
n-2 '00

where t~1i and t~) are t\" 1or t~;I.

Similarly

Ia t(lI) I
l{l lnl {lln-I)I>- ,1- 0

n-III-3 ,,- la,-tl;/I
and

I
(a 1- to(n))(a, 2 - to(nI{l(n) {l(n - I) {l(n - 2) I >- '

II 1 Il 2 n J r (a
r

_ t~,ll)(a,. _ 161ll)

(5.8 )

(5.9)

(5.10)
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Now assume I = II' If n = 3q + 2 then r = 2. Since all the zeros of SII lie
in II it follows from (5.8) that there is a positive constant A such that

I
{3 (3q+21{3(3q+ll!

3q 3q- I >- A
{3 (3q + I) r

3q
for all q, (5.11 )

Similarly when n = 3q + 1, then r = 1, and it follows from (5.9) that there
is a positive constant B such that

I{3 (3q + 11{3(3ql 1>- B3q 3q--2 r for all q, (5.12 )

and if n = 3q + 3 it follows from (5.10) that there is a positive constant C
such that

I{3 (3q + 3) {3 (3q + 2I {3 (3q + I I I >- C
3q + 2 3q + I 3q r for all q. (5.13 )

Since all the terms Yn.b k = 1, 2, 3,4,5, have the same sign, it follows that
liminfqlr3q+2(z)!>0, Iiminfq Ir3q + l (z)1 >0, and liminfq Ir3q (z)I>0.

The arguments in cases 1=12 and 1=13 are similar. (Note that if
1=13 and limnt~n)=oo or limntinl=-oo, then also (5.4)-(5.5) is used
directly. ) I

(a)

(b)

PROPOSITION 5.2. Let S(t/J)cI and zER-I,z¢ {aJ,a2,a3}'
following implications hold:

If I (II~S3qllll)112 =00 then f IQ3q(ZW=00.
q~1 3q+3 q~1

x (II S II ) 1/2 '00

If I IIS
3q

-111 =00 then I IQ3q+2(ZW=00.
q~ I 3q + 2 q~ I

oc' (liS 11)1/2 ,OC

(c) If I lI/q
-

2
11 = 00 then I IQ3q+ I (zW = 00.

q=1 3q+l q=1

The

(5.1 4 )

(5.15 )

(5.16 )

Proof Assume, e.g., that (5.14) is satisfied. By Theorem 4.3 the condi­
tion (3.2) of Theorem 3.1 is satisfied when n( q) = 3q + 3.

It follows from (4.5) that

II S3q II
ID[3q+3,3q,z]Q3q+3(Z)Q3q(z)I~IIS Illr3q + 3 (Z)I. (5.17)

3q +.1

So by (5.14) and Proposition 5.1 we conclude that the condition (3.3) of
Theorem 3.1 is satisfied.

Similarly the conditions (3.2) and (3.3) of Theorem 3.1 follow from
(5.15) and from (5.16).

The conclusion now follows from Theorem 3.1. I
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THEOREM 5.3. Let S( tfJ) c I, Z E R - /. The following implications hold:
If "" x I 1j)1~'/2q_ h ""'X, IQ (~)12_ 1. '-0 12. ..::....q~1 cq -00, t en..::....q~1 3q+;" -oo,JorJ-".

Proof It follows from Proposition 5.2 that it suffices to show that L;~ I

I 1j)1 11/21q .' I' "",Ye (liS II/liS 11)1/2 . 0 1 2Cq = 00 Imp les "::""q ~ I 3q 3 + I 3q +j = 00, J = , , .
We note that

(5.18 )

hence by the Schwartz inequality

II S3q f ~ [{ (t~~:~2q]'2 {{ S3q(t)2 dtfJ(t)]'2 = [C~~)] 1/2. II S3q II.

(5.19 )

Thus

(5.20)

By Carleman's inequality (see, e.g., [5]) and (5.18) we then get

x ( liS II ) 1/2 I ':0 ( I ) 1/2(q + I) If.L 3q >: - L >: - L [C (3 ) ] ~ 1/41q + I)q~\ IIS3q+311 ~eq~l IIS3q+311 ~eq~l 21q+11 .

(5.21 )

The sequences ""X, [c(3) ] 1/4Iq+11 and ""X [c(3) ]~1/2Iq+l)diverge
..::....q~1 2(q+11 ..::....q~1 q+1

simultaneously (by an argument similar to that in [9, p. 50]). Thus
L;=~ I I<3 1I~ 1/2q = 00 implies L;'~ I (II S3q_ 311/11 S3q II )1/2 = 00.

The arguments for j = I, 2 are similar. I
Remark. It can easily be verified that when I = I k, then always

L;=~ I IC~k +2) I 1/2q = 00. It follows from Theorem 5.3 that then
L:~IIQ3q+k+2(ZW=00 for z¢:I. Thus if I=Ik and Z¢:/k the series
L.;.~ I IQ3q+k+2(ZW always diverges.
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